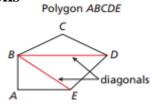
7.1 Angles of Polygons

Date:

Define Vocabulary:

diagonal

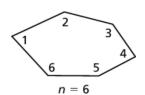

equilateral polygon

equiangular polygon

regular polygon

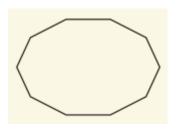
Using Interior Angles Measures of Polygons

In a polygon, two vertices that are endpoints of the same side are called *consecutive vertices*. A **diagonal** of a polygon is a segment that joins two nonconsecutive vertices.


A and B are consecutive vertices. Vertex B has two diagonals, \overline{BD} and \overline{BE} .

Theorems

Theorem 7.1 Polygon Interior Angles Theorem


The sum of the measures of the interior angles of a convex n-gon is $(n-2) \cdot 180^{\circ}$.

$$m \angle 1 + m \angle 2 + \dots + m \angle n = (n-2) \bullet 180^{\circ}$$

Examples: Find the sum of the measures of the interior angles.

1. **WE DO**

2. **YOU DO**

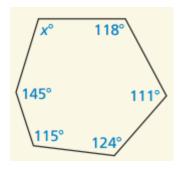
The coin shown is in the shape of an 11-gon

Examples: Find the number of sides of the polygon.

3. **WE DO**

The sum of the measures of the interior angles of a convex polygon is 1800°. Classify the polygon by the number of sides

4. **YOU DO**


The sum of the measures of the interior angles of a convex polygon is 2520°. Classify the polygon by the number of sides

Corollary 7.1 Corollary to the Polygon Interior Angles Theorem

The sum of the measures of the interior angles of a quadrilateral is 360°.

Examples: Find the unknown interior angle measure.

5. **WE DO**

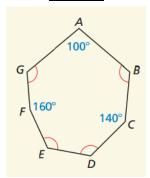
6. YOU DO

The measures of the interior angles of a quadrilateral are x° , $3x^{\circ}$, $5x^{\circ}$, and $7x^{\circ}$. Find the measure of all the interior angles.

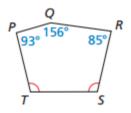
In an equilateral polygon, all sides are congruent.

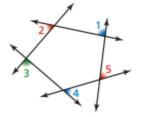
In an equiangular polygon, all angles in the interior of the polygon are congruent.

A regular polygon is a convex polygon that is both equilateral and equiangular.



Examples: Finding angle measures in polygons.

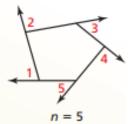

7. **WE DO**


a. Is the polygon regular? Explain your reasoning.

8. **YOU DO**

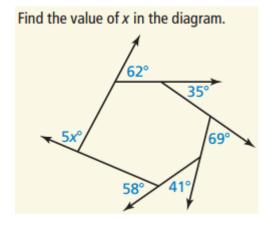
Find the measures of $\angle S$ and $\angle T$.

b. Find the measures of $\angle B$, $\angle D$, $\angle E$, and $\angle G$.



Theorem 7.2 Polygon Exterior Angles Theorem

The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is 360°.


$$m\angle 1 + m\angle 2 + \cdots + m\angle n = 360^{\circ}$$

Proof Ex. 51, p. 366

Examples: Finding an unknown exterior angle measure.

WE DO 9.



YOU DO 10.

A convex hexagon has exterior angles with measures 34°, 49°, 58°, 67°, and 75°. What is the measure of an exterior angle at the 6th vertex?

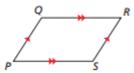
Examples: Finding angle measure of regular polygons.

WE DO 11.

Each face of the dodecahedron is shaped

- a. Find the measure of each interior angle of a regular pentagon.
- b. Find the measure of each exterior angle of a regular pentagon.

YOU DO 12.

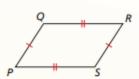

- a. Find the measure of each interior angle and each exterior angle of a regular 24-gon.
- b. Each exterior angle of a regular polygon has a measure of 18°. Find the number of sides of the regular polygon.

Define Vocabulary:

parallelogram

Using Properties of Parallelograms

A parallelogram is a quadrilateral with both pairs of opposite sides parallel. In $\square PQRS$, $\overline{PQ} \parallel \overline{RS}$ and $\overline{QR} \parallel \overline{PS}$ by definition. The theorems below describe other properties of parallelograms.

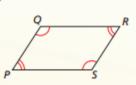


Theorem 7.3 Parallelogram Opposite Sides Theorem

If a quadrilateral is a parallelogram, then its opposite sides are congruent.

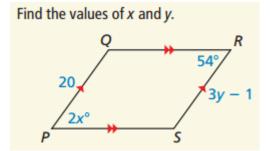
If PQRS is a parallelogram, then $\overline{PQ} \cong \overline{RS}$ and $\overline{OR} \cong \overline{SP}$.

Proof p. 368

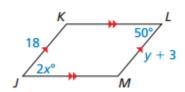


Theorem 7.4 Parallelogram Opposite Angles Theorem

If a quadrilateral is a parallelogram, then its opposite angles are congruent.


If PQRS is a parallelogram, then $\angle P \cong \angle R$ and $\angle Q \cong \angle S$.

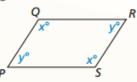
Proof Ex. 37, p. 373


Examples: Using properties of parallelograms.

1. **WE DO**

2. **<u>YOU DO</u>**

Find the values of x and y.

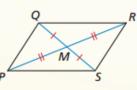


Theorem 7.5 Parallelogram Consecutive Angles Theorem

If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

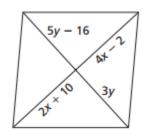
If *PQRS* is a parallelogram, then $x^{\circ} + y^{\circ} = 180^{\circ}$.

Proof Ex. 38, p. 373

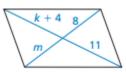


Theorem 7.6 Parallelogram Diagonals Theorem

If a quadrilateral is a parallelogram, then its diagonals bisect each other.

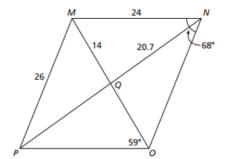

If PQRS is a parallelogram, then $\overline{QM} \cong \overline{SM}$ and $\overline{PM} \cong \overline{RM}$.

Proof p. 370



Examples: Find the value(s) of the variable(s) in the parallelogram.

3. **WE DO**



4. **YOU DO**

Examples: Use the diagram to find the indicated measure. \square PMNO is a parallelogram.

- 5. **WE DO**
- a. PO
- b. OQ

6.

YOU DO

- a. NO
- b. PQ

c. *m∠PMN*

c. *m∠0PM*

d. *m∠NOP*

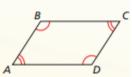

d. $m \angle NMO$

Assignment		

Theorem 7.7 Parallelogram Opposite Sides Converse

If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

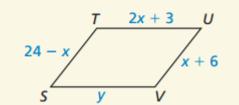
If $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$, then ABCD is a parallelogram.



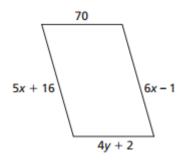
Theorem 7.8 Parallelogram Opposite Angles Converse

If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\angle A \cong \angle C$ and $\angle B \cong \angle D$, then ABCD is a parallelogram.


Proof Ex. 39, p. 383

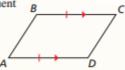
Examples: Finding side lengths of a parallelogram.


1. **WE DO**

For what values of *x* and *y* is quadrilateral *STUV* a parallelogram?

2. **YOU DO**

Find the values of x and y that make the quadrilateral a parallelogram.

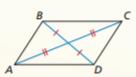


Theorem 7.9 Opposite Sides Parallel and Congruent Theorem

If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram.

If $\overline{BC} \parallel \overline{AD}$ and $\overline{BC} \cong \overline{AD}$, then ABCD is a parallelogram.

Proof Ex. 40, p. 383



Theorem 7.10 Parallelogram Diagonals Converse

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

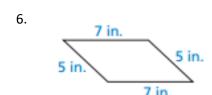
If \overline{BD} and \overline{AC} bisect each other, then ABCD is a parallelogram.

Proof Ex. 41, p. 383

Examples: State which theorem you can use to show that the quadrilateral is a parallelogram.

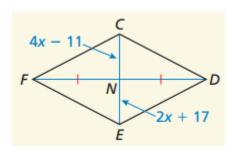
3. **WE DO**

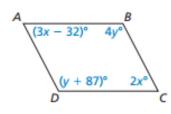

5. <u>YOU DO</u>


61°

119°

61°


4.



Examples: Find the value(s) of the variable(s) that make the quadrilateral a parallelogram.

7. **WE DO**

8. **YOU DO**

Ways to Prove a Quadrilateral Is a Parallelogram

1. Show that both pairs of opposite sides are parallel. (Definition)	
2. Show that both pairs of opposite sides are congruent. (Parallelogram Opposite Sides Converse)	
3. Show that both pairs of opposite angles are congruent. (Parallelogram Opposite Angles Converse)	
4. Show that one pair of opposite sides are congruent and parallel. (Opposite Sides Parallel and Congruent Theorem)	
5. Show that the diagonals bisect each other. (Parallelogram Diagonals Converse)	

|--|